Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202402498, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38530284

RESUMEN

We used EPR spectroscopy to characterize the structure of RNA duplexes and their internal twist, stretch and bending motions. We prepared eight 20-base-pair-long RNA duplexes containing the rigid spin-label Çm, a cytidine analogue, at two positions and acquired orientation-selective PELDOR/DEER data. By using different frequency bands (X-, Q-, G-band), detailed information about the distance and orientation of the labels was obtained and provided insights into the global conformational dynamics of the RNA duplex. We used 19F Mims ENDOR experiments on three singly Çm- and singly fluorine-labeled RNA duplexes to determine the exact position of the Çm spin label in the helix. In a quantitative comparison to MD simulations of RNA with and without Çm spin labels, we found that state-of-the-art force fields with explicit parameterization of the spin label were able to describe the conformational ensemble present in our experiments. The MD simulations further confirmed that the Çm spin labels are excellent mimics of cytidine inducing only small local changes in the RNA structure. Çm spin labels are thus ideally suited for high-precision EPR experiments to probe the structure and, in conjunction with MD simulations, motions of RNA.

2.
J Phys Chem Lett ; 14(50): 11421-11428, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38084602

RESUMEN

Mg2+ ions play an essential part in stabilizing the tertiary structure of nucleic acids. While the importance of these ions is well documented, their localization and elucidation of their role in the structure and dynamics of nucleic acids are often challenging. In this work, pulsed electron-electron double resonance spectroscopy (PELDOR, also known as DEER) was used to localize two high affinity divalent metal ion binding sites in the tetracycline RNA aptamer with high accuracy. For this purpose, the aptamer was labeled at different positions with a semirigid nitroxide spin label and diamagnetic Mg2+ was replaced with paramagnetic Mn2+, which did not alter the folding process or ligand binding. Out of the several divalent metal ion binding sites that are known from the crystal structure, two binding sites with high affinity were detected: one that is located at the ligand binding center and another at the J1/2 junction of the RNA.


Asunto(s)
Aptámeros de Nucleótidos , Ácidos Nucleicos , Espectroscopía de Resonancia por Spin del Electrón , Aptámeros de Nucleótidos/química , Ligandos , Marcadores de Spin , Tetraciclina , Sitios de Unión , Antibacterianos , Iones
3.
Magn Reson (Gott) ; 4(2): 243-269, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38111486

RESUMEN

In spite of its name, the solid effect of dynamic nuclear polarization (DNP) is also operative in viscous liquids, where the dipolar interaction between the polarized nuclear spins and the polarizing electrons is not completely averaged out by molecular diffusion on the timescale of the electronic spin-spin relaxation time. Under such slow-motional conditions, it is likely that the tumbling of the polarizing agent is similarly too slow to efficiently average the anisotropies of its magnetic tensors on the timescale of the electronic T2. Here we extend our previous analysis of the solid effect in liquids to account for the effect of g-tensor anisotropy at high magnetic fields. Building directly on the mathematical treatment of slow tumbling in electron spin resonance , we calculate solid-effect DNP enhancements in the presence of both translational diffusion of the liquid molecules and rotational diffusion of the polarizing agent. To illustrate the formalism, we analyze high-field (9.4 T) DNP enhancement profiles from nitroxide-labeled lipids in fluid lipid bilayers. By properly accounting for power broadening and motional broadening, we successfully decompose the measured DNP enhancements into their separate contributions from the solid and Overhauser effects.

4.
J Biomol NMR ; 77(5-6): 261-269, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37966668

RESUMEN

Many proteins can adopt multiple conformations which are important for their function. This is also true for proteins and domains that are covalently linked to each other. One important example is ubiquitin, which can form chains of different conformations depending on which of its lysine side chains is used to form an isopeptide bond with the C-terminus of another ubiquitin molecule. Similarly, ubiquitin gets covalently attached to active-site residues of E2 ubiquitin-conjugating enzymes. Due to weak interactions between ubiquitin and its interaction partners, these covalent complexes adopt multiple conformations. Understanding the function of these complexes requires the characterization of the entire accessible conformation space and its modulation by interaction partners. Long-range (1.8-10 nm) distance restraints obtained by EPR spectroscopy in the form of probability distributions are ideally suited for this task as not only the mean distance but also information about the conformation dynamics is encoded in the experimental data. Here we describe a computational method that we have developed based on well-established structure determination software using NMR restraints to calculate the accessible conformation space using PELDOR/DEER data.


Asunto(s)
Ubiquitina , Modelos Moleculares , Espectroscopía de Resonancia por Spin del Electrón/métodos , Resonancia Magnética Nuclear Biomolecular , Ubiquitina/metabolismo , Dominio Catalítico
5.
J Magn Reson ; 356: 107564, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37852111

RESUMEN

Pulse electron double resonance (PELDOR), also called double electron-electron resonance (DEER), is a technique capable of measuring the strength of electron spin dipolar interactions, revealing spin-spin distance distributions in ordered and disordered solid materials. Previous work has shown that PELDOR signals acquire an out-of-phase component under conditions of high electron spin polarization, such as at low temperatures and high fields. In this paper, we show theoretically and experimentally that the size and sign of this effect depends on the macroscopic shape of the sample and its orientation in the external magnetic field. This effect is caused by dipolar interactions between distant spins and provides new insights into the fundamental physics of PELDOR.

6.
Prog Nucl Magn Reson Spectrosc ; 136-137: 61-82, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37716755

RESUMEN

In this review, we describe the application of shaped pulses for EPR spectroscopy. Pulses generated by fast arbitrary waveform generators are mostly used in the field of EPR spectroscopy for broadband (200 MHz-1 GHz) excitation of paramagnetic species. The implementation and optimization of such broadband pulses in existing EPR spectrometers, often designed and optimized for short rectangular microwave pulses, is demanding. Therefore, a major part of this review will describe in detail the implementation, testing and optimization of shaped pulses in existing EPR spectrometers. Additionally, we review applications using such pulses for broadband inversion of longitudinal magnetization as well as for the creation and manipulation of transverse magnetization in the field of dipolar and hyperfine EPR spectroscopy. They demonstrate the great potential of shaped pulses to improve the performance of pulsed EPR experiments. We give a brief theoretical description of shaped pulses and their limitations, especially for adiabatic pulses, most often used in EPR. We believe that this review can on the one hand be of practical use to EPR groups starting to work with such pulses, and on the other hand give readers an overview of the state of the art of shaped pulse applications in EPR spectroscopy.

7.
J Phys Chem Lett ; 14(31): 7059-7064, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37526333

RESUMEN

Dynamic nuclear polarization (DNP) is routinely used as a method for increasing the sensitivity to nuclear magnetic resonance (NMR). Recently, high-field solid-effect DNP in viscous liquids on 1H nuclei was demonstrated using narrow-line polarizing agents. Here we expand the applicability of DNP in viscous media to 13C nuclei. To hyperpolarize 13C nuclei, we combined solid-effect 1H DNP with a subsequent transfer of the 1H polarization to 13C via insensitive nuclei enhanced by polarization transfer (INEPT). We demonstrate this approach using a triarylmethyl radical as a polarizing agent and glycerol-13C3 as an analyte. We achieved 13C enhancement factors of up to 45 at a magnetic field of 9.4 T and room temperature.

8.
Angew Chem Int Ed Engl ; 62(24): e202216610, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37009775

RESUMEN

Here we uncover collagen, the main structural protein of all connective tissues, as a redox-active material. We identify dihydroxyphenylalanine (DOPA) residues, post-translational oxidation products of tyrosine residues, to be common in collagen derived from different connective tissues. We observe that these DOPA residues endow collagen with substantial radical scavenging capacity. When reducing radicals, DOPA residues work as redox relay: they convert to the quinone and generate hydrogen peroxide. In this dual function, DOPA outcompetes its amino acid precursors and ascorbic acid. Our results establish DOPA residues as redox-active side chains of collagens, probably protecting connective tissues against radicals formed under mechanical stress and/or inflammation.


Asunto(s)
Dihidroxifenilalanina , Tirosina , Dihidroxifenilalanina/química , Tirosina/química , Colágeno/química , Oxidación-Reducción , Aminoácidos/metabolismo
9.
J Am Chem Soc ; 145(18): 10268-10274, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37104685

RESUMEN

Dynamic nuclear polarization (DNP) is a hyperpolarization method that is widely used for increasing the sensitivity of nuclear magnetic resonance (NMR) experiments. DNP is efficient in solid-state and liquid-state NMR, but its implementation in the intermediate state, namely, viscous media, is still less explored. Here, we show that a 1H DNP enhancement of over 50 can be obtained in viscous liquids at a magnetic field of 9.4 T and a temperature of 315 K. This was accomplished by using narrow-line polarizing agents in glycerol, both the water-soluble α,γ-bisdiphenylen-ß-phenylallyl (BDPA) and triarylmethyl radicals, and a microwave/RF double-resonance probehead. We observed DNP enhancements with a field profile indicative of the solid effect and investigated the influence of microwave power, temperature, and concentration on the 1H NMR results. To demonstrate potential applications of this new DNP approach for chemistry and biology, we show hyperpolarized 1H NMR spectra of tripeptides, triglycine, and glypromate, in glycerol-d8.

10.
Chemistry ; 28(56): e202201822, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-35903916

RESUMEN

The nitroxide TPA (2,2,5,5-tetramethyl-pyrrolin-1-oxyl-3-acetylene) is an excellent spin label for EPR studies of RNA. Previous synthetic methods, however, are complicated and require special equipment. Herein, we describe a uridine derived phosphoramidite with a photocaged TPA unit attached. The light sensitive 2-nitrobenzyloxymethyl group can be removed in high yield by short irradiation at 365 nm. Based on this approach, a doubly spin-labeled 27mer neomycin sensing riboswitch was synthesized and studied by PELDOR. The overall thermal stability of the fold is not much reduced by TPA. In-line probing nevertheless detected changes in local mobility.


Asunto(s)
Riboswitch , Alquinos , Espectroscopía de Resonancia por Spin del Electrón/métodos , Neomicina , Compuestos Organofosforados , ARN , Marcadores de Spin , Uridina
11.
J Magn Reson ; 337: 107185, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35276481

RESUMEN

In DNP experiments, NMR signal intensity is increased by transferring the much larger electron spin polarization to nuclear spins via microwave irradiation. Here we describe the design and performance of a probehead that makes it possible to perform Overhauser DNP experiments at 1H and 13C in liquid samples with a volume of up to 100 nl. We demonstrate on a 13C-labeled sodium pyruvate sample in water that proton decoupling under DNP conditions is possible with this new triple-resonance DNP probehead. In addition, the heat dissipation from the sample has been greatly improved with our new probe design. This makes it possible to keep liquid samples at a constant temperature under irradiation with a high-frequency 263 GHz microwave gyrotron with a few watts of output power. This improved performance opens up the possibility to disentangle the role of sample temperature and applied microwave power for DNP efficiency in liquids and to obtain a quantitative determination of EPR saturation by observing the suppression of paramagnetic shift as a function of microwave power.


Asunto(s)
Microondas , Protones , Espectroscopía de Resonancia Magnética , Temperatura , Agua/química
12.
J Am Chem Soc ; 144(3): 1164-1168, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35029974

RESUMEN

Dynamic nuclear polarization (DNP) is a powerful method to enhance NMR sensitivity. Much progress has been achieved recently to optimize DNP performance at high magnetic fields in solid-state samples, mostly by utilizing the solid or the cross effect. In liquids, only the Overhauser mechanism is active, which exhibits a DNP field profile matching the EPR line shape of the radical, distinguishable from other DNP mechanisms. Here, we observe DNP enhancements with a field profile indicative of the solid effect and thermal mixing at ∼320 K and a magnetic field of 9.4 T in the fluid phase of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid bilayers doped with the radical BDPA (1,3-bis(diphenylene)-2-phenylallyl). This interesting observation might open up new perspectives for DNP applications in macromolecular systems at ambient temperatures.

13.
Magn Reson (Gott) ; 3(1): 101-110, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37905182

RESUMEN

Double electron-electron resonance (DEER) spectroscopy measures the distribution of distances between two electron spins in the nanometer range, often on doubly spin-labeled proteins, via the modulation of a refocused spin echo by the dipolar interaction between the spins. DEER is commonly conducted under conditions where the polarization of the spins is small. Here, we examine the DEER signal under conditions of high spin polarization, thermally obtainable at low temperatures and high magnetic fields, and show that the signal acquires a polarization-dependent out-of-phase component both for the intramolecular and intermolecular contributions. For the latter, this corresponds to a phase shift of the spin echo that is linear in the pump pulse position. We derive a compact analytical form of this phase shift and show experimental measurements using monoradical and biradical nitroxides at several fields and temperatures. The effect highlights a novel aspect of the fundamental spin physics underlying DEER spectroscopy.

14.
Biophys J ; 121(1): 37-43, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34896070

RESUMEN

Pulsed electron-electron double resonance (PELDOR or DEER) spectroscopy is powerful in structure and dynamics study of biological macromolecules by providing distance distribution information ranging from 1.8 to 6 nm, providing that the biomolecules are site-specifically labeled with paramagnetic tags. However, long distances up to 16 nm have been measured on perdeuterated and spin-labeled proteins in deuterated solvent by PELDOR. Here we demonstrate long-range distance measurement on a large RNA, the 97-nucleotide 3'SL RNA element of the Dengue virus 2 genome, by combining a posttranscriptional site-directed spin labeling method using an unnatural basepair system with RNA perdeuteration by enzymatic synthesis using deuterated nucleotides. The perdeuteration removes the coupling of the electron spins of the nitroxide spin labels from the proton nuclear spin system of the RNA and does extend the observation time windows of PELDOR up to 50 µs. This enables one to determine long distances up to 14 nm for large RNAs and their conformational flexibility.


Asunto(s)
Proteínas , ARN , Espectroscopía de Resonancia por Spin del Electrón/métodos , Conformación Molecular , Proteínas/química , ARN/química , Marcadores de Spin
15.
J Am Chem Soc ; 143(43): 17875-17890, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34664948

RESUMEN

Distance distribution information obtained by pulsed dipolar EPR spectroscopy provides an important contribution to many studies in structural biology. Increasingly, such information is used in integrative structural modeling, where it delivers unique restraints on the width of conformational ensembles. In order to ensure reliability of the structural models and of biological conclusions, we herein define quality standards for sample preparation and characterization, for measurements of distributed dipole-dipole couplings between paramagnetic labels, for conversion of the primary time-domain data into distance distributions, for interpreting these distributions, and for reporting results. These guidelines are substantiated by a multi-laboratory benchmark study and by analysis of data sets with known distance distribution ground truth. The study and the guidelines focus on proteins labeled with nitroxides and on double electron-electron resonance (DEER aka PELDOR) measurements and provide suggestions on how to proceed analogously in other cases.


Asunto(s)
Óxidos N-Cíclicos/química , Espectroscopía de Resonancia por Spin del Electrón/normas , Proteínas/química , Marcadores de Spin , Benchmarking , Espectroscopía de Resonancia por Spin del Electrón/métodos , Reproducibilidad de los Resultados
16.
J Phys Chem Lett ; 11(19): 7946-7953, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32818376

RESUMEN

ATP-binding cassette (ABC) transporters constitute one of the largest protein superfamilies, and they mediate the transport of diverse substrates across the membrane. The molecular mechanism for transducing the energy from ATP binding and hydrolysis into the conformational changes remains elusive. Here, we determined the thermodynamics underlying the ATP-induced global conformational switching for the ABC exporter TmrAB using temperature-resolved pulsed electron-electron double resonance (PELDOR or DEER) spectroscopy. We show that a strong entropy-enthalpy compensation mechanism enables the closure of the nucleotide-binding domains (NBDs) over a wide temperature range. This is mechanically coupled with an outward opening of the transmembrane domains (TMDs) accompanied by an entropy gain. The conserved catalytic glutamate plays a key role in the overall energetics. Our results reveal the thermodynamic basis for the chemomechanical energy coupling in an ABC exporter and present a new strategy to explore the energetics of similar membrane protein complexes.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Adenosina Trifosfato , Catálisis , Cationes Bivalentes/química , Espectroscopía de Resonancia por Spin del Electrón , Hidrólisis , Magnesio/química , Modelos Moleculares , Unión Proteica , Conformación Proteica , Temperatura , Termodinámica
17.
Angew Chem Int Ed Engl ; 59(51): 23025-23029, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-32804430

RESUMEN

The structure and flexibility of RNA depends sensitively on the microenvironment. Using pulsed electron-electron double-resonance (PELDOR)/double electron-electron resonance (DEER) spectroscopy combined with advanced labeling techniques, we show that the structure of double-stranded RNA (dsRNA) changes upon internalization into Xenopus laevis oocytes. Compared to dilute solution, the dsRNA A-helix is more compact in cells. We recapitulate this compaction in a densely crowded protein solution. Atomic-resolution molecular dynamics simulations of dsRNA semi-quantitatively capture the compaction, and identify non-specific electrostatic interactions between proteins and dsRNA as a possible driver of this effect.


Asunto(s)
Oocitos/química , ARN Bicatenario/química , Animales , Espectroscopía de Resonancia por Spin del Electrón , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Oocitos/citología , Marcadores de Spin , Electricidad Estática , Xenopus laevis
18.
J Phys Chem Lett ; 11(15): 6286-6290, 2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32667797

RESUMEN

We demonstrate a series of multitrityl radical compounds where accurate spin-counting by pulsed electron paramagnetic resonance (EPR) can be achieved at X-band (9 GHz) frequencies, even for molecules with very short and flexible linkers. Multiquantum filter experiments, well-known from NMR, were used to count the number of coupled electron spins in these compounds. The six pulse double quantum filter sequence used in EPR for distance determinations in biradicals was used. Precise phase settings to separate higher quantum coherences were achieved by an arbitrary waveform generator. The trityl radicals have narrow spectral width so that homogeneous excitation of all spins by the pulses is possible. The transversal relaxation times of higher quantum coherences of trityl radicals are sufficiently long to allow their detection. Our results on model compounds show the potential of this approach to determine oligomeric states in protein complexes in their native environment using functionalized trityl spin labels.


Asunto(s)
Radicales Libres/química , Compuestos de Tritilo/química , Espectroscopía de Resonancia por Spin del Electrón , Cinética , Membrana Dobles de Lípidos/química , Proteínas Mitocondriales/química , Modelos Moleculares , Relación Estructura-Actividad
19.
Magn Reson (Gott) ; 1(2): 275-284, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-37904825

RESUMEN

A continuous flow dynamic nuclear polarization (DNP) employing the Overhauser effect at ambient temperatures can be used among other methods to increase sensitivity of magnetic resonance imaging (MRI). The hyperpolarized state of water protons can be achieved by flowing aqueous liquid through a microwave resonator placed directly in the bore of a 1.5 T MRI magnet. Here we describe a new open Fabry-Pérot resonator as DNP polarizer, which exhibits a larger microwave exposure volume for the flowing liquid in comparison with a cylindrical TE013 microwave cavity. The Fabry-Pérot resonator geometry was designed using quasi-optical theory and simulated by CST software. Performance of the new polarizer was tested by MRI DNP experiments on a TEMPOL aqueous solution using a blood-vessel phantom. The Fabry-Pérot resonator revealed a 2-fold larger DNP enhancement with a 4-fold increased flow rate compared to the cylindrical microwave resonator. This increased yield of hyperpolarized liquid allows MRI applications on larger target objects.

20.
Nucleic Acids Res ; 48(2): 924-933, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31777925

RESUMEN

Pulsed electron paramagnetic resonance (EPR) experiments, among them most prominently pulsed electron-electron double resonance experiments (PELDOR/DEER), resolve the conformational dynamics of nucleic acids with high resolution. The wide application of these powerful experiments is limited by the synthetic complexity of some of the best-performing spin labels. The recently developed $\bf\acute{G}$ (G-spin) label, an isoindoline-nitroxide derivative of guanine, can be incorporated non-covalently into DNA and RNA duplexes via Watson-Crick base pairing in an abasic site. We used PELDOR and molecular dynamics (MD) simulations to characterize $\bf\acute{G}$, obtaining excellent agreement between experiments and time traces calculated from MD simulations of RNA and DNA double helices with explicitly modeled $\bf\acute{G}$ bound in two abasic sites. The MD simulations reveal stable hydrogen bonds between the spin labels and the paired cytosines. The abasic sites do not significantly perturb the helical structure. $\bf\acute{G}$ remains rigidly bound to helical RNA and DNA. The distance distributions between the two bound $\bf\acute{G}$ labels are not substantially broadened by spin-label motions in the abasic site and agree well between experiment and MD. $\bf\acute{G}$ and similar non-covalently attached spin labels promise high-quality distance and orientation information, also of complexes of nucleic acids and proteins.


Asunto(s)
Emparejamiento Base/genética , ADN/aislamiento & purificación , Espectroscopía de Resonancia por Spin del Electrón , ARN/aislamiento & purificación , ADN/química , Isoindoles/química , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , ARN/química , Marcadores de Spin
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...